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Abstract-The potential of drug combinations to treat and 

overcome medication resistance complex genetic diseases is 

evident. Synergistic drug combinations offer a promising way 

to enhance drug therapy efficacy and reduce the required 

medication dosage. However, developing effective combination 

medication therapies with synergistic effects has been 

challenging, despite numerous ongoing clinical investigations. 

Current models and approaches to detect medication synergy 

outlined in the literature lack the expected consistency in 

outcomes. to better comprehend the impact of particular 

medication combinations, it is essential to be familiar with the 

vocabulary used to describe synergy. In this study, a 

combinational drug screen is utilized to identify useful features 

for locating synergistic or efficient drug combinations. The 

feature selection algorithm (Boruta) helps select the most 

relevant features, and machine learning models are then 

trained using the selected feature dataset. Performance 

assessment metrics like sensitivity, accuracy, and specificity are 

used to compare the trained models, and the Random Forest 

model stands out for its significantly better performance 

compared to other models.  
Keywords: Drug combination, Drug resistance, Synergy, 

Efficacy, Machine learning and Random Forest 

I. INTRODUCTION  

Cancer has become a leading global cause of death, and 
anti-cancer drugs play a crucial role in treatment, extending 
patients' lifespans. However, despite identical therapies, due 
to genetic differences, patients with an identical cancer type 
frequently respond differently[1]. Gene-specific targeted 
therapy has been proposed as a potential solution for cancer 
treatment. Still, it requires extensive research studies, which 
face challenges such as limited samples, complex 
procedures, strict environmental requirements, and high 
costs[2]. To address these issues, to develop models that can 
forecast the effects of drugs, researchers have combined 
genomic data and data on drug response. For instance [3] 
developed a regression model using the random forest 
method, successfully predicting drug responses in breast 
cancer and glioblastoma cell lines.Other techniques, like 
those based on asymmetrical gene expression, have also been 
explored. [4] to predict clinical medication response, baseline 
expression levels of genes and in vitro drug sensitivity are 
taken into account. Interestingly, studies have revealed that 

structurally [5] similar pharmaceuticals can produce similar 
effects on cancer cell lines with comparable gene expression 
profiles. Building on this concept, a new enhanced system 
for predicting drug reactions based on cancer genomics has 
been developed, identifying potential predictor genes for 
drug response through data analysis. 

II. METHODS AND  MATERIALS 

This research made use of data from the Genetics of Drug 

Sensitivity in Cancer (GDSC) database[6], created by the 

Sanger Institute in the United Kingdom. The study focused 

on 12 different medications and gene expression data 

collected from one thousand human cancer cell lines[7]. 

Two key indicators, an inhibitory level that is half maximum 

(IC50) and the area beneath the curve (AUC), were 

employed to evaluate drug response. The AUC stands for 

the area that lies beneath the dose-response curve, whereas 

the IC50 specifies the medication level which reduces cell 

viability by 50% [8]. Lower IC50 and AUC values 
correspond to a higher tumor cells' reaction to the 

medication. To predict drug responses, the researchers used 

a machine learning algorithm and the pair of response 

indicators [9] based on cancer cell line gene expression data. 

Initially, they employed Elastic Net to make predictions 

using genes selected through the p-value of the Pearson 

correlation coefficient. Additionally, separate Elastic Net 

regressions were performed for each response value, and 

predictor genes were chosen from the previously identified 

genes[10] . The aim was to discover common predictor 

genes capable of predicting drug response with higher or 
comparable accuracy to the independently derived results 

for both response indicators. To determine the biological 

relevance of the predictive genes[11], map and gene 

taxonomy analyses were conducted. Fig.1. illustrates the 

complete experimental procedure. 

A. Features Selection Based on Pearson Correlation 
Coefficient    

In the gene expression data of certain pharmaceuticals, there 

are numerous genomes, but only a few genes show a strong 

correlation with drug responses. To ensure the selection of 
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relevant genes, a pre-selection step becomes crucial. 

However, Elastic Net, which is capable of gene selection, 

can be influenced by data dependencies or bulk effects, 

leading to potential errors [12]. This might result in the 

exclusion of genes that are vital in predicting drug 
responses.To overcome this issue, a two-step gene selection 

approach was implemented. Initially, genes were preselected 

using the Pearson correlation coefficient before applying 

Elastic Net. This allowed for a more refined selection of 

predictor genes by considering the p-value of the connection 

between medication reaction and gene expression [13-14]. 

Genes with a significance level of 0.05 or lower were 

chosen during the initial feature selection process. Elastic 

Net is a l1 and l2 regularised linear regression framework 

that is particularly helpful when working with a large 

number of linked features. Given that our dataset has 

significantly more features (genes) than samples, there is a 
risk of overfitting in the prediction. To tackle this, Elastic 

Net was employed to select genes and reduce the 

generalization error when predicting drug response. 

B. Elastic Net-Based Feature Selection and Drug 
Response Prediction  

We conducted exploratory experiments to assess Elastic 

Net's suitability by comparing it with two well-known 

approaches [15]. SVR can function as a non-linear regressor 

with different our experiments, we used the radial basis 

function kernel as a kernel function. Xgboost, on the other 

hand, is an enhanced version of the gradient boosting 

algorithm based on decision trees. While both algorithms 

have shown good performance in various applications, our 

preliminary experiments indicated that they were more 

prone to overfitting compared to Elastic Net. Elastic Net 

fared better than SVR and Xgboost when comparing the 

quantity of shared predictive genes for the two response 
indicators. Using Pearson relationship coefficients to 

contrast the anticipated results with and measured IC50 

values, Fig. 2. presents a summary of the comparison 

between the twelve medicines. The figure presents a 

comprehensive outline of the proposed framework for 

predicting drug synergy and efficacy. The process begins by 

collecting data from single-agent and multiple-agent 

substance screenings. Specifically, Using the procedure 

outlined in section 5.2.1, IC50 values are gathered on 27 cell 

lines from single-agent drug testing. These IC50 values are 

then normalized within the [-1, 1] range with log 
normalisation, where -1 represents the least sensitive drug-

cell-line pair, and 1 indicates the most resistant pair. 

Features to analyse the synergy and efficiency of 

combination drug therapy are established based on data on 

single-agent drug response. The desired data undergoes 

normalization using the min-max normalization technique, 

which ensures a linear transformation of the input 

information while preserving the original relationships 

between data values. Next, the feature selection algorithm, 

Boruta, is employed to rank various features based on their 

average reduction in the Gini coefficient. Features with the 

highest and average Gini importance are selected. The 
prepared dataset is used to train a variety of machine 

learning models in the fourth stage. The optimal model is 

then selected by comparing performance indicators such as 

sensitivity, specificity, accuracy, and area under the curve 

(AUC). Once the finest model for predicting drug synergy 

and efficacy is chosen, model testing is performed. 

Combinations with a combination index (CI) of -1, resulting 

in a growth suppression rate of 70%, are considered 

efficacious and synergistic. 
   

C. Phase-1: Features Selection using Boruta  

 

For further validation, two strategies are employed. To 

begin with, we do a 10-fold cross validation and use 

effectiveness parameters like sensitivity and specificity to 
evaluate the model's resilience. The data is split into 10 

equal groups for this operation, using the other groups as the 

training set and one group as the test set. To lessen bias 

between various data occurrences during training and 

testing, the testing findings are then averaged. In the (1) 

estimate efficient and synergistic drug combinations, a 

second dataset is utilized for additional validation purposes. 

Imp(X_)=1/N_T∑_〖p(x)〗 

∑_(X∈T:V(S_X )=X_) p(x)∆i(s_x,x)〗     (1) 

The proportion p(x) denotes the ratio of Nt/N samples that 

visited vertex x from vertex v(sx) and were used for 

dividing Sx. When the Gini index is used as the measure of 

impurity, it is referred to as the mean decrease Gini 

coefficient. Based on their highest and average Gini 
importance, a total of 24 features were selected. Fig. 3. 

visualizes the mean decrease in the Gini coefficient for these 

chosen features, where a lower Gini value indicates higher 

significance. 

 

 
Fig. 1. Heat map: Drug combination of DREAM challenge dataset  

 Table 1 presents the nine different machine learning models 

used in this research, all of which are available as R 

packages, a programming language that is open-source and 

covered by the GNU General Public License. The table also 

provides details of the tuning parameters utilized during 

model training.The initial step in the analysis involves IC50 

normalization for drug response values. Resistant cell lines 

have responses (IC50) higher than the maximum drug 

concentration, while sensitive cell lines have lower 
responses. To achieve IC50 normalization, drug responses 

are divided by the highest concentration and then subjected 

to log2 transformation. This process results in obtaining a 

summary of all responses within the [-1, 1] range for the 

future analysis. The feature selection method, Boruta is used 

to rank the features in accordance with various 

characteristics determined by the mean decrease Gini 

coefficient. From this analysis, a selection of 24 features is 

obtained with the highest and average Gini importance.The 
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chosen set of features is then used to train the machine 

learning models listed in Table 1. Among these models, the 

optimal one (random forest) is selected by comparing area 

under the curve (AUC), sensitivity, specificity, and accuracy 

are examples of performance indicators. 

 
Fig. 2. Overall flow of the proposed work   

Table 1. Parameters of the ML models 

ML Model Equipment Used 

(Random Forest) 
mtry=2.0, ntree=500.0, 

sampling=bagging 

(Neural Network) size=10.0 

(Support Vector) epsilon=0.6,nu=0.4 

LM None 

M5P3 pruned=15.0, rules=9.0,smoothed=0.6 

(Decision Stump) smoothed=0.9,rules=6.0,pruned=25.0 

Foba lambda=1e-5, k=1000 

Cubis neighbors=30.0,ommittees=10.0 

(Decision Tree) 
maxdepth=30.0 

,minsplit=20.0,minbucket=7.7 

 

III. RESULT AND ANALYSIS 

A. Drug-Drug Similar Matrices  

 

In this study, the predictive model's durability is assessed 

using K-fold cross-validation, which divides the dataset into 

K pieces, and (K-1) groups are used for training the model 

while one subset is used for evaluation. This process is 

repeated for each subsample, generating K results, and the 

final output is obtained by averaging these outcomes. A 10-

fold cross-validation is employed in this research, dividing 
the dataset into ten equal-sized parts for validation, ensuring 

robustness. The primary goal of the research is to predict the 

effectiveness and synergy of drug combinations based on 

the dose response of a single agent. Previous studies have 

shown that the dose-response curves of individual agents 

offer insights into combinational responses. This is 

accomplished by applying the Held et al. high-throughput 

drug screen, which focuses on 150 dosage responses data 

points for a single agent with 40 compounds in the context 

of BRAF-melanomas. 27 cell lines are used in the drug 

screening, including cell lines with RAS, RAS(WT), mutant 

BRAF, and BRAF(WT) mutations. Additional details on 

some of the pharmaceuticals used in Held et al.'s drug 

combination screening can be found in Table 2. Based on 

the dose-response of single agents, the median and range of 

each response parameter for each cell line are calculated for 

each drug combination. Feature extraction is vital as it plays 
a crucial role in computational models used to predict drug 

interactions. Identifying highly responsive features enhances 

prediction accuracy and provides insights into the 

underlying mechanisms of synergy. In this study, features 

are calculated to leverage the genetic effects of each 

medicine[1] on the number of responses for each cell line 

combinations. 

Table 2. Parameters of the ML models 

Model Name Accuracy Specificity Senstivity 

(Random Forest) 0.8212 0.9081 0.7942 

(Neural Network) 0.7233 0.7104 0.8572 

(Support Vector) 0.7768 0.8899 0.7501 

LM 0.7546 0.7354 0.8183 

M5P3 0.7112 0.7134 0.6971 

(Decision Stump) 0.6567 0.6783 0.5653 

foba 0.7012 0.7151 0.6251 

cubis 0.6810 0.6892 0.6251 

(Decision Tree) 0.6979 0.7501 0.6890 

 

In order to indicate the similarity of pharmacological 

combinations for each combination, we have identified 54 

features. As shown in Table 1, we first used a dataset made 
up of 750 perturbed RAS and BRAF melanoma medication 

combinations to train several machine learning models. 

Based on performance metrics including accuracy, 

specificity, and sensitivity, Table 2 compares these models. 

To reduce bias caused by the training-testing partition, each 

model is trained using four distinct partition sets, 

emphasizing the consistency of the models across diverse 

partition sets. In both tables, the first position in each entry 

represents accuracy, while the second position represents 

sensitivity. The results clearly indicate that the random 

forest model outperforms other methods. The random forest 
model emerges as the most effective training model for 

machine learning, exhibiting higher accuracy and 

specificity, indicating a lower error rate or incorrect 

predictions. Specifically, according to reports, the random 

forest synergy model's accuracy and specificity are 0.9091 

and 0.8222, respectively. This demonstrates the superior 

performance of the random forest model in predicting drug 

synergy and efficacy in this study. 

 

 
 

Fig. 3. Random Forest with K-fold (K=10) and cross validation Sensitivity 
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Fig. 4. . Using Accuracy and K-fold (K=10) cross validation for Random 

Forest   

Next, we proceeded to train random forest models using the data 
outlined in section 5.2.1. Specifically, two separate models based 
on random forests were developed to predict the efficacy and 
synergy of drugs. The screening of combination drugs played a 
significant role in identifying drug combinations that exhibit 
synergy and are genotype-selective. Genotype-selective 
combinations refer to those that, on average, inhibit growth by at 
least 15%, with a typical inhibition level of at least 50%. 
Additionally, we defined an overall effective combination as one 

that inhibits growth by at least 70%. Fig. 3. and 4. presents the 
predictive performance of both models: the synergistic model (with 
an accuracy of 0.8222 and specificity of 0.9091) and the genotype-
selective-effective model (with an accuracy of 0.8319 and 
specificity of 0.8963). 

IV. CONCLUSION  

In order to uncover synergistic or efficient drug 

combinations, this research uses a mixed drug screen to 

extract useful data. The study compares and assesses the 
effectiveness of machine learning models using the 

algorithm for selecting features (Boruta) and different 

machine learning models based on their sensitivity, 

accuracy, and specificity. Notably, when compared to other 

models, the Random Forest models have performed 

noticeably better. According to Table 1, 2, the accuracy of 

the Braf-synergy and Braf-effective models utilising the 

Random Forest model is stated to be 0.8319 and 0.8222, 

respectively. These predictive models align well with 

existing literature, indicating their potential in identifying 

effective medication combinations that work well together 
to treat certain malignancies. The proposed methodology 

demonstrates the potential to reduce the search space and 

effectively predict new drug combinations, leading to 

improved options for cancer treatment. The study's 

conclusions highlight the promising use of machine learning 

in drug combination research and its potential impact on 

advancing cancer therapies. By leveraging machine learning 

techniques, this research contributes to a better 

understanding of drug synergism mechanisms, opening 

doors to optimized and personalized treatment options for 

cancer patients. Moving forward, it is crucial to explore 
potential drug combination features to gain a holistic 

understanding of drug-disease interactions, ultimately 

enhancing the efficacy of cancer treatment. Additionally, the 

utilization of ensemble machine learning methods could 

further improve prediction performance in this context. 

Thereby, this research represents a significant step towards 

developing more effective and personalized cancer 

treatments through the identification of synergistic drug 

combinations. By utilizing machine learning techniques and 

incorporating genomic variability, this study contributes to 

the ongoing efforts to overcome drug resistance and 
improve cancer treatment outcomes, offering hope for more 

effective therapies and better patient outcomes in the fight 

against cancer. 
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